Copied to
clipboard

G = C24.83D6order 192 = 26·3

12nd non-split extension by C24 of D6 acting via D6/C6=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C24.83D6, (C2×C12)⋊38D4, (C23×C4)⋊10S3, C127D451C2, (C23×C12)⋊10C2, D6⋊C443C22, C12.425(C2×D4), C244S315C2, (C2×D12)⋊51C22, C226(C4○D12), (C2×C6).289C24, C4⋊Dic365C22, (C22×C4).465D6, C6.135(C22×D4), C12.48D451C2, (C2×C12).887C23, Dic3⋊C445C22, C37(C22.19C24), (C4×Dic3)⋊59C22, (C2×Dic6)⋊59C22, C23.28D633C2, C23.26D613C2, C22.304(S3×C23), (C23×C6).111C22, C23.245(C22×S3), (C22×C6).418C23, (C22×S3).127C23, (C22×C12).530C22, (C2×Dic3).151C23, C6.D4.130C22, (C4×C3⋊D4)⋊51C2, (S3×C2×C4)⋊54C22, C6.64(C2×C4○D4), (C2×C4○D12)⋊14C2, (C2×C6)⋊12(C4○D4), (C2×C4)⋊17(C3⋊D4), C2.72(C2×C4○D12), (C2×C6).575(C2×D4), C4.145(C2×C3⋊D4), C2.8(C22×C3⋊D4), C22.35(C2×C3⋊D4), (C2×C4).740(C22×S3), (C2×C3⋊D4).137C22, SmallGroup(192,1350)

Series: Derived Chief Lower central Upper central

C1C2×C6 — C24.83D6
C1C3C6C2×C6C22×S3S3×C2×C4C2×C4○D12 — C24.83D6
C3C2×C6 — C24.83D6
C1C2×C4C23×C4

Generators and relations for C24.83D6
 G = < a,b,c,d,e,f | a2=b2=c2=d2=1, e6=f2=d, ab=ba, ac=ca, faf-1=ad=da, ae=ea, fbf-1=bc=cb, bd=db, be=eb, cd=dc, ce=ec, cf=fc, de=ed, df=fd, fef-1=e5 >

Subgroups: 760 in 330 conjugacy classes, 119 normal (25 characteristic)
C1, C2, C2, C2, C3, C4, C4, C22, C22, C22, S3, C6, C6, C6, C2×C4, C2×C4, C2×C4, D4, Q8, C23, C23, C23, Dic3, C12, C12, D6, C2×C6, C2×C6, C2×C6, C42, C22⋊C4, C4⋊C4, C22×C4, C22×C4, C22×C4, C2×D4, C2×Q8, C4○D4, C24, Dic6, C4×S3, D12, C2×Dic3, C3⋊D4, C2×C12, C2×C12, C2×C12, C22×S3, C22×C6, C22×C6, C22×C6, C42⋊C2, C4×D4, C22≀C2, C4⋊D4, C22⋊Q8, C22.D4, C23×C4, C2×C4○D4, C4×Dic3, Dic3⋊C4, C4⋊Dic3, D6⋊C4, C6.D4, C2×Dic6, S3×C2×C4, C2×D12, C4○D12, C2×C3⋊D4, C22×C12, C22×C12, C22×C12, C23×C6, C22.19C24, C12.48D4, C23.26D6, C4×C3⋊D4, C23.28D6, C127D4, C244S3, C2×C4○D12, C23×C12, C24.83D6
Quotients: C1, C2, C22, S3, D4, C23, D6, C2×D4, C4○D4, C24, C3⋊D4, C22×S3, C22×D4, C2×C4○D4, C4○D12, C2×C3⋊D4, S3×C23, C22.19C24, C2×C4○D12, C22×C3⋊D4, C24.83D6

Smallest permutation representation of C24.83D6
On 48 points
Generators in S48
(1 26)(2 27)(3 28)(4 29)(5 30)(6 31)(7 32)(8 33)(9 34)(10 35)(11 36)(12 25)(13 45)(14 46)(15 47)(16 48)(17 37)(18 38)(19 39)(20 40)(21 41)(22 42)(23 43)(24 44)
(13 39)(14 40)(15 41)(16 42)(17 43)(18 44)(19 45)(20 46)(21 47)(22 48)(23 37)(24 38)
(1 26)(2 27)(3 28)(4 29)(5 30)(6 31)(7 32)(8 33)(9 34)(10 35)(11 36)(12 25)(13 39)(14 40)(15 41)(16 42)(17 43)(18 44)(19 45)(20 46)(21 47)(22 48)(23 37)(24 38)
(1 7)(2 8)(3 9)(4 10)(5 11)(6 12)(13 19)(14 20)(15 21)(16 22)(17 23)(18 24)(25 31)(26 32)(27 33)(28 34)(29 35)(30 36)(37 43)(38 44)(39 45)(40 46)(41 47)(42 48)
(1 2 3 4 5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48)
(1 23 7 17)(2 16 8 22)(3 21 9 15)(4 14 10 20)(5 19 11 13)(6 24 12 18)(25 44 31 38)(26 37 32 43)(27 42 33 48)(28 47 34 41)(29 40 35 46)(30 45 36 39)

G:=sub<Sym(48)| (1,26)(2,27)(3,28)(4,29)(5,30)(6,31)(7,32)(8,33)(9,34)(10,35)(11,36)(12,25)(13,45)(14,46)(15,47)(16,48)(17,37)(18,38)(19,39)(20,40)(21,41)(22,42)(23,43)(24,44), (13,39)(14,40)(15,41)(16,42)(17,43)(18,44)(19,45)(20,46)(21,47)(22,48)(23,37)(24,38), (1,26)(2,27)(3,28)(4,29)(5,30)(6,31)(7,32)(8,33)(9,34)(10,35)(11,36)(12,25)(13,39)(14,40)(15,41)(16,42)(17,43)(18,44)(19,45)(20,46)(21,47)(22,48)(23,37)(24,38), (1,7)(2,8)(3,9)(4,10)(5,11)(6,12)(13,19)(14,20)(15,21)(16,22)(17,23)(18,24)(25,31)(26,32)(27,33)(28,34)(29,35)(30,36)(37,43)(38,44)(39,45)(40,46)(41,47)(42,48), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48), (1,23,7,17)(2,16,8,22)(3,21,9,15)(4,14,10,20)(5,19,11,13)(6,24,12,18)(25,44,31,38)(26,37,32,43)(27,42,33,48)(28,47,34,41)(29,40,35,46)(30,45,36,39)>;

G:=Group( (1,26)(2,27)(3,28)(4,29)(5,30)(6,31)(7,32)(8,33)(9,34)(10,35)(11,36)(12,25)(13,45)(14,46)(15,47)(16,48)(17,37)(18,38)(19,39)(20,40)(21,41)(22,42)(23,43)(24,44), (13,39)(14,40)(15,41)(16,42)(17,43)(18,44)(19,45)(20,46)(21,47)(22,48)(23,37)(24,38), (1,26)(2,27)(3,28)(4,29)(5,30)(6,31)(7,32)(8,33)(9,34)(10,35)(11,36)(12,25)(13,39)(14,40)(15,41)(16,42)(17,43)(18,44)(19,45)(20,46)(21,47)(22,48)(23,37)(24,38), (1,7)(2,8)(3,9)(4,10)(5,11)(6,12)(13,19)(14,20)(15,21)(16,22)(17,23)(18,24)(25,31)(26,32)(27,33)(28,34)(29,35)(30,36)(37,43)(38,44)(39,45)(40,46)(41,47)(42,48), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48), (1,23,7,17)(2,16,8,22)(3,21,9,15)(4,14,10,20)(5,19,11,13)(6,24,12,18)(25,44,31,38)(26,37,32,43)(27,42,33,48)(28,47,34,41)(29,40,35,46)(30,45,36,39) );

G=PermutationGroup([[(1,26),(2,27),(3,28),(4,29),(5,30),(6,31),(7,32),(8,33),(9,34),(10,35),(11,36),(12,25),(13,45),(14,46),(15,47),(16,48),(17,37),(18,38),(19,39),(20,40),(21,41),(22,42),(23,43),(24,44)], [(13,39),(14,40),(15,41),(16,42),(17,43),(18,44),(19,45),(20,46),(21,47),(22,48),(23,37),(24,38)], [(1,26),(2,27),(3,28),(4,29),(5,30),(6,31),(7,32),(8,33),(9,34),(10,35),(11,36),(12,25),(13,39),(14,40),(15,41),(16,42),(17,43),(18,44),(19,45),(20,46),(21,47),(22,48),(23,37),(24,38)], [(1,7),(2,8),(3,9),(4,10),(5,11),(6,12),(13,19),(14,20),(15,21),(16,22),(17,23),(18,24),(25,31),(26,32),(27,33),(28,34),(29,35),(30,36),(37,43),(38,44),(39,45),(40,46),(41,47),(42,48)], [(1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48)], [(1,23,7,17),(2,16,8,22),(3,21,9,15),(4,14,10,20),(5,19,11,13),(6,24,12,18),(25,44,31,38),(26,37,32,43),(27,42,33,48),(28,47,34,41),(29,40,35,46),(30,45,36,39)]])

60 conjugacy classes

class 1 2A2B2C2D···2I2J2K 3 4A4B4C4D4E···4J4K···4P6A···6O12A···12P
order12222···222344444···44···46···612···12
size11112···21212211112···212···122···22···2

60 irreducible representations

dim1111111112222222
type+++++++++++++
imageC1C2C2C2C2C2C2C2C2S3D4D6D6C4○D4C3⋊D4C4○D12
kernelC24.83D6C12.48D4C23.26D6C4×C3⋊D4C23.28D6C127D4C244S3C2×C4○D12C23×C12C23×C4C2×C12C22×C4C24C2×C6C2×C4C22
# reps12142221114618816

Matrix representation of C24.83D6 in GL4(𝔽13) generated by

1000
01200
00120
00012
,
1000
0100
0010
00012
,
1000
0100
00120
00012
,
12000
01200
0010
0001
,
7000
01100
0090
0003
,
01100
7000
0003
0090
G:=sub<GL(4,GF(13))| [1,0,0,0,0,12,0,0,0,0,12,0,0,0,0,12],[1,0,0,0,0,1,0,0,0,0,1,0,0,0,0,12],[1,0,0,0,0,1,0,0,0,0,12,0,0,0,0,12],[12,0,0,0,0,12,0,0,0,0,1,0,0,0,0,1],[7,0,0,0,0,11,0,0,0,0,9,0,0,0,0,3],[0,7,0,0,11,0,0,0,0,0,0,9,0,0,3,0] >;

C24.83D6 in GAP, Magma, Sage, TeX

C_2^4._{83}D_6
% in TeX

G:=Group("C2^4.83D6");
// GroupNames label

G:=SmallGroup(192,1350);
// by ID

G=gap.SmallGroup(192,1350);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-3,232,758,675,6278]);
// Polycyclic

G:=Group<a,b,c,d,e,f|a^2=b^2=c^2=d^2=1,e^6=f^2=d,a*b=b*a,a*c=c*a,f*a*f^-1=a*d=d*a,a*e=e*a,f*b*f^-1=b*c=c*b,b*d=d*b,b*e=e*b,c*d=d*c,c*e=e*c,c*f=f*c,d*e=e*d,d*f=f*d,f*e*f^-1=e^5>;
// generators/relations

׿
×
𝔽